

SenoGram® Decision Support Tool

Enhanced clinical decision-making powered by artificial intelligence

The breast cancer diagnostics process is enhanced with SenoGram[®], an artificial intelligence (AI) decision support tool that increases precision and specificity without sacrificing sensitivity and efficiency in interpreting images from the Imagio[®] Breast Imaging System.

Recent findings from a multi-reader study showed the use of AI in clinical mammography could play a vital role in increasing sensitivity and specificity, especially for radiologists with less experience assessing breast lesions. An article in *JAMA Network Open* showed that using machine-learning methods, such as the Imagio[®] SenoGram[®] AI decision support tool, can enhance interpretations, reducing missed cancers and false positives. This study concluded that AI algorithms, combined with radiologist assessment in a single-reader screening environment, improved overall accuracy. Seno's SenoGram[®] adds yet another level of diagnostic confidence, improving accuracy for optimum interpretation and appropriate follow-up.^{1,2} Imagio[®] with native SenoGram[®] results in better precision and diagnostic confidence. This new modality enables clinicians to gain insights into the nature of a mass, providing an earlier diagnosis of malignancy and greater specificity when assessing benign masses.

"This makes you a better radiologist, having more and deeper information. We can decide more certainly with this anatomic and functional information what is the right path for the patient."³

> Jeroen Veltman, MD, PhD MRON Radiologie Oost-Nederland

A breast imager sits at the diagnostic workstation, using reference keys (left monitor) provided for each internal and external OA imaging attribute, to aid in assigning individual feature scores.

<image><complex-block><image><image><image>

To learn more about Imagio[®] and the SenoGram[®] Decision Support Tool, visit ExperienceImagio.com

Imagio[®] OA/US Breast Imaging System

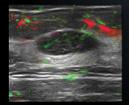
A Digital Assistant

SenoGram[®] decision support enables readers to objectively and efficiently interpret the images produced using Imagio[®], assess the likelihood of malignancy (LOM), and assign a more precise diagnostic BI-RADS. Using AI and machine learning, SenoGram[®] integrates findings from the OA/US exam with demographic variables to objectively and precisely calculate LOM.

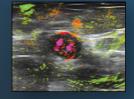
In essence, SenoGram[®] improves what breast imagers can achieve with their subjective assignments of LOM alone. This technology addresses two key problems faced by readers:

- It reduces information overload that affects the LOM by combining fourteen variables from both the Imagio[®] scan and demographics in the estimate of LOM, and
- the SenoGram[®] AI can easily overcome discordances that frequently occur in breast masses and provide a "second set of eyes" for radiologists to provide additional precision and confidence in their assignments.⁴

Clinically Efficacious


In an independent, multi-reader pivotal study, readers achieved higher specificity at 98% sensitivity using SenoGram[®] compared to subjective assessments. Readers also reported greater confidence in their assignments of LOM and BI-RADS categories with SenoGram[®] decision support.⁵ The outcome is better diagnosis through data and machine learning.

OA/US Breast Imaging System


Learn about the SenoGram[®] Decision Support Tool at **ExperienceImagio.com**.

Benign case – Fibroadenoma

A 0.365 (0.757) (0.767)		
magio Ultrasound		
	. 000000	
	_ 0000000	
	000000	
US Sound Transmission	. 000000	
Opto-Acoustic		_
DA Brannel Peripheral Zone Vascala	R 000000	
DA Capadar ar Brandary	. 000000	
	. 000000	
	. 000000	
	. 000000	
Other		
Namoyan BRADS		
Fallent Age		
		_
Lesion Poetenter Depth (cm)	14	
8	SenoGram Likelihood of Malignancy	
	Each line corresponds to estimated NPA Sensitivity	
in .	Manager BRADI are good	

ER - (negative) PR - (negative) HER2 - (negative) ki67 - 50

Invasive Ductal Carcinoma Grade III

75 Peripheral Zene		00000
	35	00000
15 Ceptular or Boundary Zone	12	0000000
15 Shape Score	×	000000
15 Internal Texture	55	00000
15 Sound Transmission	36	08000
pto-Acoustic		
X External Peripheral Zone Vessela	32	000000
M Capsular or Boundary	8	0020080
M Internal Vessel Score	12	000000
M Internal Hemoglobin Score	80	000000
M Internal Blush Score	×	00000
ther		
Ammogram-BIRADS		
wteet Age		45
esion Size (om)		10
asion Poeterior Depth (cm)		10
SenoGra	m Likeliho	ood of Malignancy
	erresponds to a	ostimated SBN. Sensitivity
05		100%

1. Bassi, E., Russo, A., Oliboni, E., et al. (2023). The role of an artificial intelligence software in clinical senology: A mammography multi-reader study. *Breast Radiology*. https://link.springer.com/article/10.1007/s11547-023-01751-1 2. Schaffter, T., Buist, D. S. M., Lee, C. I., et al. (2020). Evaluation of combined artificial intelligence and radiologist assessment to interpret screening mammograms. *JAMA Network Open*. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2761795 3. Kania, J. (2022) Opto-acoustic imaging: A new modality changing the future of breast imaging. *Radiology Business*. https://radiologybusiness.com/sponsored/57816/seno-medical/topics/medical-imaging/ womens-imaging/breast-imaging/opto-acoustic 4. Fornell, D. (2023). Mismatch between radiologist shortages, rising exam volumes a growing concern in medical imaging. *Radiology Business*. https://radiologybusiness.com/topics/healthcare-management/healthcare-staffing/ mismatch-between-radiologist-shortages-rising-exam-volumes-growing-concern-medical-imaging 5. Seiler, J. S., Neuschler, E. I., Butler, R. S., Lavin, P. T., & Dogan, B. E. Opto-acoustic imaging with decision support for differentiation of benign and malignant breast masses: A 15-reader retrospective study. *Amer J of Roentgenology*. https://www.ajronline.org/doi/abs/10.2214/AJR.22.28470

8023 Vantage Drive, 10th Floor, Suite 1000, San Antonio, TX 78230 Phone (210) 615-6501 • www.senomedical.com For more information, please contact Sales and Marketing at (210) 615-6501.